Bilinear Probabilistic Canonical Correlation Analysis via Hybrid Concatenations
نویسندگان
چکیده
Canonical Correlation Analysis (CCA) is a classical technique for two-view correlation analysis, while Probabilistic CCA (PCCA) provides a generative and more general viewpoint for this task. Recently, PCCA has been extended to bilinear cases for dealing with two-view matrices in order to preserve and exploit the matrix structures in PCCA. However, existing bilinear PCCAs impose restrictive model assumptions for matrix structure preservation, sacrificing generative correctness or model flexibility. To overcome these drawbacks, we propose BPCCA, a new bilinear extension of PCCA, by introducing a hybrid joint model. Our new model preserves matrix structures indirectly via hybrid vectorbased and matrix-based concatenations. This enables BPCCA to gain more model flexibility in capturing two-view correlations and obtain close-form solutions in parameter estimation. Experimental results on two real-world applications demonstrate the superior performance of BPCCA over competing
منابع مشابه
Sparsification of Probabilistic Canonical Correlation Analysis
We have recently developed several ways of performing Canonical Correlation Analysis [1, 5, 7, 4] with probabilistic methods rather than the standard statistical tools. However, the computational demands of training such methods scales with the square of the number of samples, making these methods uncompetitive with e.g. artificial neural network methods [3, 2]. In this paper, we examine a rece...
متن کاملMatrix-Variate Probabilistic Model for Canonical Correlation Analysis
Motivated by the fact that in computer vision data samples are matrices, in this paper, we propose a matrix-variate probabilistic model for canonical correlation analysis (CCA). Unlike probabilistic CCA which converts the image samples into the vectors, our method uses the original image matrices for data representation. We show that the maximum likelihood parameter estimation of the model lead...
متن کاملA Probabilistic Interpretation of Canonical Correlation Analysis
We give a probabilistic interpretation of canonical correlation (CCA) analysis as a latent variable model for two Gaussian random vectors. Our interpretation is similar to the probabilistic interpretation of principal component analysis (Tipping and Bishop, 1999, Roweis, 1998). In addition, we can interpret Fisher linear discriminant analysis (LDA) as CCA between appropriately defined vectors.
متن کاملCanonical Analysis of the Relationship between Components of Professional Ethics and Dimensions of Social Responsibility
Background: Today, professional ethics and social responsibility play an important role in organizations. This study aimed canonical analysis of the relationship between components of professional ethics and social responsibility dimensions among the first high school teachers in the Naghadeh province. Method: This study, in terms of purpose is application, and in terms of data collec...
متن کاملA Probabilistic Derivation of Canonical Correlation Analysis
We review a new method of performing Canonical Correlation Analysis (CCA) with Artificial Neural Networks. We have previously [4, 3] compared its capabilities with standard statistical methods on simple data sets where the maximum correlations are given by linear filters. In this paper, we re-derive the learning rules from a probabilistic perspective and then by use of a specific prior on the w...
متن کامل